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Rising bubbles 
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The shape of a rising bubble, or of a falling drop, in an incompressible viscous fluid 
is computed numerically, omitting the condition on the tangential traction at the 
bubble or drop surface. When the bubble is sufficiently distorted, its top is found to 
be spherical and its bottom is found to be rather flat. Then the radius of its upper 
surface is in fair agreement with the formula of Davis & Taylor (1950). This distortion 
occurs when the effect of gravity is large while that  of surface tension is small. When 
the effect of surface tension is large, the bubble is nearly a sphere. 

The shape is found, together with the flow of the surrounding fluid, by assuming 
that both are steady and axially symmetric, with the Reynolds number being large. 
The flow is taken to  be a potential flow. The boundary condition on the normal 
component of normal stress, including the viscous stress, is satisfied, but not that  on 
the tangential component. The problem is converted into an integro-differential set 
of equations, reduced to a set of algebraic equations by a difference method, and 
solved by Newton’s method together with parameter variation. 

1. Introduction 
When a bubble rises or a drop falls through a fluid, i t  is deformed from a spherical 

shape by the flow of the fluid around it and by the hydrostatic pressure due to gravity. 
Experiments show that small bubbles and drops are nearly spherical, but large ones 
are nearly spherical caps with rather spherical upper surfaces and concave lower 
surfaces (Davies & Taylor 1950). We wish to calculate the shapes of such deformed 
bubbles and drops, both of which we shall refer to as bubbles. 

In  order to  calculate the shape we must simultaneously determine the flow of the 
surrounding fluid, treating the bubble surface as a free boundary. We want the 
problem to  be steady, but since a bubble expands as it rises, its surface is not steady. 
To make it so, we assume that the bubble remains at  a fixed height, with the 
surrounding fluid moving downward past it, both being axially symmetric. We also 
assume that the Reynolds number of the flow is large, so that the effects of viscosity 
are confined to a thin boundary layer around the bubble. Then by treating the 
surrounding fluid as incompressible, we can represent its motion as a potential flow, 
which automatically satisfies the Navier-Stokes equations. 

One way to complete the formulation is to match this potential flow to the flow 
in the boundary layer. We shall not do this, because, even for a spherical bubble, 
the flow in the boundary layer is not known near the rear stagnation point on the 
axis of symmetry a t  colatitude 6 = m. The pressure drop p,,(6) across the boundary 
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layer is known over the rest of the surface of the sphere (Moore 1963), but the 
expression for it has a non-integrable singularity at 6' = 7r. 

As an alternative we ignore the boundary layer and use the potential flow right 
up to  the boundary. This yields an exact solution of the Navier-Stokes equations 
throughout the fluid, with vanishing normal velocity on the surface of the bubble. 
We adjust this flow to make the normal component of normal stress vanish on the 
surface, but we cannot make the tangential component vanish. Because of this, t,he 
solution of this problem must be viewed as an approximation to that of the actual 
problem rather than as its high-Reynolds-number asymptotic form. 

The major error introduced by ignoring the boundary layer is that  due to  neglecting 
the pressure drop pBL(6') across it. Therefore we shall compare p B L  with the normal 
component of normal viscous stress vrr, which we do take into account. For a sphere, 
pBL(8) is obtained by setting y = 0 in equation (2.37) of Moore (1963). Upon 
evaluating the integral in that equation we get 

Here R is the Reynolds number of the incident flow, which has velocity t T  at infinity, 
and p is the fluid density. On the other hand by computing crrr from the potential 
flow around a sphere we get 

cos 8. 
12p u* 

crrr(L9) = 2p- - ucos6'  1-- = - 
ar a [ ( :')ITEa R 

(1.2) 

Here p is the viscosity of the fluid and a is the radius of the bubble. 
From these equations pBL(@)/crrr(lj) = 0 at O', 0.045 at lo', 0.095 at Z O O ,  0.16 at 

30°, 0.31 at 4 5 O ,  and 0.77 a t  60'. We see that p B L  < 0.31 urr from 0 = 0 to 0 = 45'. 
navies & Taylor (1950) have shown that highly deformed bubbles have nearly 
spherical upper surfaces out to  a rim a t  about 46' to 64'. so pBL is less than one third 
of crrr over most of the upper surfaces of such bubbles. That the results for a sphere 
apply on the upper surface of such deformed bubbles has been shown by Bahga & 
Weber (1981), who found that the velocity measured in the boundary layer is nearly 
that given by potential theory, and it is even closer to  that obtained by including 
;Moore's boundary-layer correction. 

On the lower surface p,, is larger than on the upper surface and therefore it is not 
negligible. Furthermore the lower surface of a highly deformed bubble is adjacent 
to a turbulent wake, which we have not taken into account. Therefore we cannot 
expect the shape of the lower surface to be correct. 

In addition to distorting the bubble, gravity exerts a buoyancy force -J' on it. 
A steady bubble is possible only if the flow exerts on it an opposite drag force F ,  and 
this force is supplied by the viscous stress. This is why we included this stress, even 
though our primary interest is in the effect of gravity. However our calculation does 
not take account of the turbulent flow in the wake of a highly distorted bubble, nor 
the prcssure drop across the boundary layer, so i t  cannot yield the experimentally 
obscrved drag. I n  $5 we improve our calculation of the drag by the method of Lcvich 
(1949). This correction is important for nearly spherical bubbles. However, for highly 
distorted ones, wherc the effects of the turbulent wake dominate, the drag is still 
inaccuratc. 

Our formulation leads to a free-boundary problem for the bubble surface and the 
potential flow around it. It differs from similar problems that we solved previously 
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(Vanden-Broeck & Keller 1980; Miksis, Vanden-Broeck & Keller 1981) because i t  
includes gravity and viscosity terms in the pressure boundary conditions. Neverthe- 
less, we solve it by a similar method, which involves reduction to an integro-differential 
system of equations for the bubble surface and the potential on it. We discretize this 
system to convert i t  into a set of nonlinear algebraic equations. Then we solve these 
equations by Newton's method combined with parameter variation to provide the 
starting values. These steps are described in 993 and 4, following the formulation in 
$2. Some of the results are shown in the figures, and they are discussed in $6. 

2. Formulation 
Let us consider an axially symmetric bubble of density pb and pressure p ,  a t  rest 

in an incompressible viscous fluid of density p and kinematic viscosity 1'. We assume 
that the fluid is in steady motion past the bubble, and that a t  infinity i t  has velocity 
I '  along the z-axis. The Reynolds number of the flow is supposed to  be high, and the 
flow is assumed to  have a potential $ ( r ,  z )  outside a boundary layer around the bubble 
surface S. We suppose that the potential can be extended up to AS', so that it satisfies 
the equations 

A 4  = 0 outside S, (2.1) 

$ N U z  a t  infinity, (2.2) 

a$/an=o on S .  ( 2 . 3 )  

On LS the balance of the normal component of normal stress is expressed by 

au 
-p+2pv- = (TK-pb-pbgZ. 

an 

Here 2u/c?n is the normal derivative of the normal velocity on S, K is the mean 
curvature of S, (T is the surface tension, and p is the pressure in the fluid at S.  We 
shall approximate p by the pressure just outside the boundary layer, which can be 
found from the Bernoulli equation 

Here piEl is the pressure a t  infinity at z = 0 and g is the acceleration due to gravity. 
r p o n  eliminating p from the last two equations we obtain 

(2.4) 

Kow (2.1)-(2.4) constitute a problem for the determination of $, X and some of the 
constants in (2.4). 

I t  is convenient to introduce dimensionless variables into this problem by using 
C' as the unit of velocity and re,  the equivalent radius of the bubble, as the unit of 
length. This radius is defined by writing the volume I' of the bubble as @r;. Thus 
in dimensionless variables 

1' = 4m, (2.5) 

whilc (2.1)-(2.3) are unchanged except that is replaced by unity in (2.2).  However, 

a24 (2.4) becomes 
4 K  

(V$)z-gC', z--++8Rp1-+y = 0 on S. IV an2 
(2.6) 
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In  ( 2 . 6 )  we have introduced the following four dimensionless numbers 
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(2.7) 

Here R is the Reynolds number, C, is the drag coefficient, W is the Weber number 
and y is the cavitation number. 

In  view of the axial symmetry of the bubble, we write the equation of its surface 
as z = fl( r )  on the upstream face where z < 0, and as z = f 2 ( r )  on t'he downstream face 
where z > 0. Thus we choose the origin z = 0 to correspond to t'he maximum radius 
TM a t  whichJ,(r,) = 0O andf2(rM) = 00. Then 

f l ( T M )  = O, f 2 ( r M )  = O, (2.8) 

and from symmebry, we must have on the z-axis 

fl(0) = 0, j 2 (0 )  = 0. (2.9) 

Another consequence of the symmetry is the occurrence of stagnation points at t.he 
two points where S intersects the z-axis. In  terms of the t'angential derivative a/as 
along S. this leads t'o the two conditions 

(2.10) 

The set of equations (2.1)-(2.3), (2 .5 ) ,  (2.6) and (2.8)-(2.10) constitute the problem 
for the determination of $ ( r ,  z ) ,  fl(r) and fi(r). It is necessary to specify two of the 
four dimensionless parameters in (2.7) and then the other two must be found as part 
ofthe solution. In  the absence of gravity and viscosity, (2.7) shows that C, = 0 and 
R = 00, so the problem reduces to that treated previously by Miksis et al. (1981). Then 
one of the remaining parameters y and W had to  be specified and the other had to 
be found. 

3. Reformulation as an integro-differential system 
We can simplify the problem just formulated by expressing the solution $ of 

(2 .1 ) - (2 .3 )  in terms of its values on 8. To do so we introduce the axially symmetric 
Green function of (2.1), and apply Green's theorem to it and the function $ - z .  This 
function vanishes a t  infinity, in view of ( 2 . 2 )  with 11 = 1, and its normal derivative 
on S is just -&/an because of (2.3). Finally we evaluate the resulting expression for 
q5-z on t>he surface S. This derivation is the same as that in Miksis et al. (1981). In  
this way we obtain the following integral equation for the value of q3 on S, in which 
the functions fl, f 2  and their first derivatives occur: 
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Here we have introduced the notation 

k2 = 4rs, 

Zj” = ( s - r ) 2 + [ f i ( r ) - f j ( s ) ] 2 ,  

with K ( m )  the complete elliptic integral of the first kind. 

the value of # on S, and two of the four parameters in (2.7). 
The problem is now that of solving (3.1), (2.5), (2.6) and (2.8)-(2.10) for f l ( r ) ,  f2(r), 

4. Numerical method 

variable t defined by 

Then we replace fi and f2 by the new dependent function /3(t) given by 

Before describing the numerical method, we replace r by the new independent 

r = ! r M ( 1 - f 2 )  ( - 1  < t <  1). (4.1) 

( - 1 < t < O ) ,  fSr(t)l 
P( t )  = - 

TM 
(4.2) 

(4.3) 

The reason for introducing these changes is that the functions fl(r) and f2(r), and 
therefore # [ r , f i ( r ) ] ,  are singular a t  r M .  The new functions P( t )  and [(t) are regular a t  
the corresponding point t = 0. 

Now for some integer N ,  we introduce the mesh points t, and t,,; defined by 

(4.4) 

We also introduce the corresponding quantities 

pz = P(t,) ( I  = 1 , .  . . , 2 N -  l ) ,  (4.6) 

[,+!, = [(tz+;) ( I  = 1 , .  . . , 2 N - 2 ) .  (4.7) 

We shall determine these quantities to satisfy (2.6) and (3.1) a t  the 2N- 3 mesh points 
t,, I = 2, . . . , 2 N -  2 .  To evaluate fl  at  t, we use linear interpolation between the values 
of 5 at  t,-+ and t,+g. 

The logarithmic singularities introduced by the Green functions are integrated by 
a method similar to that of Longuet-Higgins & Cokelet (1976), and the integrals are 
evaluated by the trapezoidal rule. The derivative a2#/an2 is expressed in terms of the 
tangential derivative a2#/as2 with the aid of Laplace’s equation. The procedure 
follows that of Vanden-Broeck & Keller (1980) and Miksis (1981), where more details 
are given. 
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The foregoing procedure yields 4N - 6 nonlinear algebraic equations involving the 
4 N + 2  quantities PI, R, C,, W ,  y and rM, We obtain two more equations from 
(2.9) by using a three-point Lagrange difference formula and two equations from 
(2.10) by means of a three-point Lagrange extrapolation formula. Then (2.5) and (2.8) 
each gives one more equation for a total of 4N equations. Thus by specifying two 
of the parameters, for example y and C,, we have 4 N  unknowns and 4 N  equations. 

We solve these equations by Newton's method, so we need values with which to 
start the iteration procedure. For given values of the specified parameters, we use 
as starting values the final or 'converged ' solution for slightly different parameter 
values for which we have already solved the equations. Similarly, when we increase 
the value of N ,  we start with the solution for a slightly smaller value of N ,  augmented 
by interpolation and extrapolation. 

To obtain an overall start, we use the fact that  as y tends to infinity, the bubble 
tends to a sphere of unit radius, for which q5 can be found explicitly. We can also 
construct the asymptotic form of the solution for large y by seeking it as an expansion 
in powers of y-l. By solving the equations of $2 with y and R given, we find 

9 (3082 0 - 3 
r =  1- +o(y-2) ,  

8Y 

W = 87-'- 1 2 ~ - ~  + O ( Y - ~ ) ,  (4.9) 

CD = 32R-'+O(y-l). (4.10) 

In  these equations p and 13 are polar coordinates in the ( r ,  2)-plane, with 8 measured 
from the z-axis. Thus (4.8) shows that the bubble is an oblate ellipsoid of revolution 
when terms of order yPz are negligible. Harper (1972, equation (2.45)) obtained (4.8) 
with y replaced by 8 / W ,  which follows from (4.9), and Moore (1963) obtained (4.10). 

5.  Levrch's method 
Neglecting the pressure drop across the boundary layer has introduced some error 

into our calculations. The magnitude of this error was indicated by Moore (1963), who 
obtained the result (4.10), C, = 32R-l, for a spherical bubble, whereas the correct 
value obtained by Levich (1949) is C, = 48R-'. Our calculation of C, for non-spherical 
bubbles must also be in error, so we shall correct i t  by adapting Levich's method. 
He has shown that for large Reynolds numbers the energy dissipation rate D of the 
flow can be found by using the potential flow in the integral for D. Then D can be 
transformed into the following form (Lamb 1932, p. 580): 

a 
D = vp Js an (Vq5)z dS.  

Now D is also equal to the power UF delivered by the drag force F ,  which is the 
negative of the buoyancy force - jnr:(p -pb)g.  Upon equating U F  to D given by (5,l). 
and introducing the dimensionless variables defined in (2.7), we obtain 

4I 
C --.  

- nR 

Here the dimensionless integral I is defined by 

(5.2) 

(5 .3)  
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Thus by using the potential flow in (5 .3) ,  we can obtain an improved value for C, 
from (5.2). or if CYD is given we get an improved value for R. 

6.  Discussion of results 
In discussing bubbles it is customary to introduce the Morton number 

which depends upon physical properties of the fluid, but not upon the size or velocity 
of the bubble. The other dimensionless parameters are related to M by the identity 

(6.2) 

Therefore we can specify two parameters, say y and C,,, solve for the flow, the bubble 
shape, W' and R, and then find M from (6.2). Alternatively, by using in (6.2) the 
improved value for R given by ( 5 . 2 ) ,  we obtain instead 

w3 1-4. (6.3) 

W'hm we wish to specify the values of M and y ,  we adjoin (6.3) to the set of 4N 
equations, and we include the three parameters €2, W and C, as unknowns. Then 
we have a set of 4N + 1 equations for 4N + 1 unknowns. 

We have used the numerical method of 94 to calculate bubble shapes for various 
parameter values. To illustrate the convergence of the method, we consider the case 
y = 0 and M = 1.75 x lo-'. For N = 10, 15 and 20, we found for W the values 3-3283, 
3.3852 and 34052, respectively. For the axial ratio x of the bubble, d e h e d  by 
,y = 2 r M [ f , ( 0 )  -f1(O)]-l, we obtained 3.524,3.553 and 3.563 respectively. These results 
indicate that the method converges. 

As a further test of the method, we computed the solution for the large value y = 50 
with M = 2.6 x using N = 15, and compared the results with the asymptotic 
formulae (4.8) and (4.9). The numerical results were p ( 0 )  = 0.989, p($r) = 1.0085 and 
I+' = 0.1551 The correspmding asymptotic results were p ( 0 )  = 0.985, p(&) = 1.0075 
and W = 01552. This agreement indicates that both results are correct for this value 

Another confirmation of our results is their agreement for small M ( M  < 10-lo) with 
those wc obtained in the absence of gravity and viscosity (Miksis et a1 1981). Since 
41 is zero when either g = 0 or u = 0, this agreement is to be expected. 

Figure 1 shows two examples of computed bubble profiles for one value of M and 
two values of y ,  while figure 2 shows two more examples for a larger value of M and 
the same two values of y. As we expect, the bubbles with the smaller value of y are 
more distorted than those with the larger value. 

Davies & Taylor (1950) observed that the tops of large bubbles are very nearly 
spherical. They concluded that the flow around the top is approximately that around 
a sphere. By using this flow in the Bernoulli equation near the top, they derived a 
relation between the velocity of rise C7 and the radius of curvature rc at  the top. In  
our dimensionless variables it is 

of y .  

This re1at)ion fits the experimental data quite well. 
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(a ) 

FIQURE 1. Computed bubble profiles for M = 1.75 x lo-' and (a )  y = 2 ,  ( b )  y = 0. Computed value 
of CD = 1.07 in ( a )  and C, = 2.05 in (6) .  Dashed curves are circular arcs with radii given by the 
Davies-Taylor formula (6.4). The unit of length is re. 
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( b )  

FICLTRE 2. Same as figure 1 but for M = 1.0 x Computed value of C, = 2.3 in (a )  and 
C, = 3.0 in ( b ) .  
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We have compared (6.4) with the results of our computations. Such comparisons 
are shown in figures 1 and 2. In  them each dotted line is an arc of a circle with the 
radius rc determined by (6.4) from the value of C, for the bubble shown. The figures 
show that the agreement is good for y = 0 and for the two values of M .  These values 
of ill are both large, indicating that gravity and viscosity are important. However, 
in figure 2 the value of M is 1.0 x Thus to 
obtain bubbles that resemble those in water we must use a much larger value of M 
than that of water. This is a consequence of the fact, mentioned earlier, that  our 
method ignores the turbulence that occurs in the wake of a real distorted bubble. 

For y fixed our computations suggest that  there is a maximum value of M above 
which no solutions exist. For y = 0 this value is approximately M = 

whereas for water M x 2.6 x 

X 
FIGURE 3. Weber number U' versus axial ratio x = 2rM/[f2(0)-fi(0)]. Curves terminated where 

r = 0. 

In figure 3 we plot the Weber number W versus the axial ratio x for three values 
of M. The cavitation number y decreases along each curve until it  becomes zero, at 
which point we terminated the curve. We see that as M increases, so does W, for fixed 
axial ratio. Otherwise the behaviour is similar to that in the inviscid case. 

Figure 4 is a plot of C,M-? verses RMS. The inviscid results of Miksis (1981). 
corresponding to M = 0, are plotted along with the results for ill = 1.25 x lo-' and 
M = 1.0 x lop5. Again we stop the calculation a t  y = 0. The bottom curve is rather 
flat and horizontal near the point where y = 0, indicating that C, is rather 
independent of R there. Then the shape is determined mainly by C,,, as (6.4) indicates. 

In  figure 5 we plot the terminal velocity U as a function of re,  the equivalent radius 
of the bubble, for three values of M. To obtain Uand r ,  we use (2.7) and then eliminate 
I$' by means of (6.2).  In  this way we get 

I (6.5) 
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;::.-, 
1.0 x 10-5 

I 1 1 1 I 1 
I I I I I I 

0-2 I 1 I I I 
I r I I 

I 2 3 4 5 6 
re 

FIGURE 5 .  Terminal velocity 1I as a function of bubble equivalent radius re. The unit of is 
[vg( l -p , /p)] iM-fr  and the unit of re is [ ( l - p , , / p ) p g / c ] - ~ M ~ .  The dashed line from figure 6 of 
Moore (1965) represents the experimental da ta  of Haberman & Morton (1953) for air bubbles in 
Varsol with M = 6.45 x tO-’O, u = 2.25, p = 0-782 and ,E = 0.0085. These values yield 38.9 cm/s for 
the  unit of U and 0.021 cm for the unit of re. 
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The computed values of C, and R are used in (6.5) t o  find the values of ( 1  and re 
shown in figure 5. The dashed line in the figure is a smoothed curve drawn through 
the experimental points of Haberman & Morton (1953). The properties of the fluid, 
listed in the caption, are from the caption of figure 6 in Moore (1965). Since 
Jl = 4.45 x 10-l0, the experimental curve should be compared with the theoretical 
curve for icI = 0, which is the smallest value of M shown in the figure. If a logarithmic 
scale were used for U ,  the agreement between theory and experiment would appear 
about the same as in Moore's figure 6. 
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